Optimal Design of the Adaptive Normalized Matched Filter Detector
نویسندگان
چکیده
This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the scatter estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. While an increase of ρ seems to improve the conditioning of the estimate, it might however cause it to significantly deviate from the true covariance matrix. The setting of the optimal regularization parameter is a difficult question for which no convincing answers have thus far been provided. This constitutes the major motivation behind our work. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), appropriate when the clutter follows a Gaussian distribution and the regularized Tyler estimator (RTE) for non-Gaussian spherically invariant distributed clutters. The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on recent random matrix theory results studying the asymptotic fluctuations of the statistics of the ANMF detector when the number of samples and their dimension grow together to infinity, we propose a design for the regularization parameter that maximizes the detection probability under constant false alarm rates. Simulation results which support the efficiency of the proposed method are provided in order to illustrate the gain of the proposed optimal design over conventional settings of the regularization parameter.
منابع مشابه
A Family of Variable Step-Size Normalized Subband Adaptive Filter Algorithms Using Statistics of System Impulse Response
This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the system impulse response statistics and the optimal step-size vector is obtained by minimizing the mean-square deviation(MSD). In comparison with NSAF, the VSS-NSAF algorithm has faster convergence speed and lower MSD. To reduce the computa...
متن کاملAdaptive polarimetric detection method for target in partially homogeneous background
In this paper, the problem of enhancing the detection performance of detector for target in partially homogeneous background is addressed. Based on a general measurement model, a new constant false alarm rate (CFAR) adaptive matched detector (AMD) is proposed through a two-step design procedure. The detection performance of the AMD is theoretically analyzed. Then, the correctness of the analyti...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملAdaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)
In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...
متن کاملExtending the Radar Dynamic Range using Adaptive Pulse Compression
The matched filter in the radar receiver is only adapted to the transmitted signal version and its output will be wasted due to non-matching with the received signal from the environment. The sidelobes amplitude of the matched filter output in pulse compression radars are dependent on the transmitted coded waveforms that extended as much as the length of the code on both sides of the target loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.06027 شماره
صفحات -
تاریخ انتشار 2015